Classify text into custom categories without training a model. The model determines which labels best describe the input text.
Usage
hf_classify_zero_shot(
text,
labels,
model = "facebook/bart-large-mnli",
multi_label = FALSE,
token = NULL,
...
)Arguments
- text
Character vector of text(s) to classify.
- labels
Character vector of candidate labels/categories.
- model
Character string. Model ID from Hugging Face Hub. Default: "facebook/bart-large-mnli"
- multi_label
Logical. If TRUE, allows multiple labels per text. Default: FALSE (single label per text).
- token
Character string or NULL. API token for authentication.
- ...
Additional arguments (currently unused).
Examples
if (FALSE) { # \dontrun{
# Classify into custom categories
hf_classify_zero_shot(
"I just bought a new laptop",
labels = c("technology", "sports", "politics", "food")
)
# Multi-label classification
hf_classify_zero_shot(
"This laptop is great for gaming",
labels = c("technology", "gaming", "entertainment"),
multi_label = TRUE
)
} # }